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But first...

Trends and challenges in mechanics, according to machine learning:

A portrait painting of Salvador Dali with a robotic half face
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A portrait painting of Salvador Dali with a robotic half face
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But first...

Trends and challenges in mechanics, according to machine learning:

A complicated Finite Element model, by Vincent van Gogh Engineering Mechanics, by Salvador Dalf
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But first...

Trends and challenges in mechanics, according to machine learning:

A Finite Element model knitted out of wool Two teddy bears discovering a new metamaterial
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But first...

Trends and challenges in mechanics, according to machine learning:

An ancient Greek running a computer model, marble, ca. 200 BC A futuristic Universal Testing Machine
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Taking a peek under the hood

Combination of encoder-decoder architectures, multistage training:
e 3.5 billion parameters, trained with about 600 million text-image pairs

e A Gaussian diffusion decoder constructs new images every forward pass, pixel by pixel

“a corgi
playing a
flame
throwing
trumpet”
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Taking a peek under the hood

A Transformer mapping word sequences to latent sequences:

A Transformer neural network, by Johannes Vermeer
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[Vaswani et al (2017), arXiv:1706.03762v5]
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Taking a peek under the hood

A feedforward neural network mapping inputs to outputs:

A feedforward neural network, by Piet Mondriaan
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Taking a peek under the hood

A feedforward neural network mapping inputs to outputs: __
(1,},’11 =h ( U'jj”) )
J

A feedforward neural network, by Piet Mondriaan
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The blessing and the curse of unlimited flexibility

What to do with so many parameters? A simple example:
e Fitting some noisy response with a k-Nearest Neighbors model
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The blessing and the curse of unlimited flexibility

What to do with so many parameters? A simple example:
e Fitting some noisy response with a k-Nearest Neighbors model
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The blessing and the curse of unlimited flexibility

The bias-variance tradeoff:

e We hide some data from the model and trade some flexibility for robustness
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The blessing and the curse of unlimited flexibility

The bias-variance tradeoff:
e We hide some data from the model and trade some flexibility for robustness
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The blessing and the curse of unlimited flexibility

The power of averaging:
e Bayesian machine learning: uncertainty over dataset = uncertainty over model
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Precalibrated model Offline Pretrained ML

+++++++++++++++++++++++++++++++++++++++++++++++++++++

Expensive model Active learning
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Precalibrated model

Minimum data

--------------------

No data

Expensive model

Pretrained ML

A lot of data

Scarce data

Active learning
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Isaac Newton training a machine learning model
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(offine)
Path-dependent material behavior

Recurrent Neural Networks (RNN) for strain path dependency:
e Network includes latent (hidden) variables accounting for history dependency

e Fast surrogates for expensive models. Accurate as long as trained with enough data

W e e i = T { i ¢
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Classical RNN Gated Recurrent Unit (GRU) Long Short Term Memory (LSTM)
[Maia et al (2022), arXiv:2209.07320v1]
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(offne)
(o) Path-dependent material behavior

Recurrent Neural Networks (RNN) for strain path dependency:
e Network includes latent (hidden) variables accounting for history dependency

e Fast surrogates for expensive models. Accurate as long as trained with enough data
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(o) Path-dependent material behavior

Recurrent Neural Networks (RNN) for strain path dependency:

e Network includes latent (hidden) variables accounting for history dependency

e Fast surrogates for expensive models. Accurate as long as trained with enough data
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Path-dependent material behavior

Recurrent Neural Networks (RNN) for strain path dependency:

e Network includes latent (hidden) variables accounting for history dependency

e Fast surrogates for expensive models. Accurate as long as trained with enough data

Compression stress-strain curve of composite open hole specimen
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Active learning
(Onine)

Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem

no correlation

~
p(t) =N (t[0,071)
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Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem

_ \/\/ p(t) = N (t0,K)
= Ky = k(xy.x0) = o2 exp (— e %, — %)
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variance scaling length scale
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(offine )
o G Active learning
(crire)

Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem
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Active learning
(Cnlne]

Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem
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Active learning
(Cnlne]

Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem
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(oo Active learning
(onine)

Reducing sampling effort by only getting data when necessary:

e Expensive model response is unknown for most inputs = epistemic uncertainty

e Bayesian machine learning can elegantly treat this problem
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[Zhang et al (2022), arXiv:2208.05912v1]
[Rocha et al (2021), JCPX 9:100083] [Francesco Maresca's group (RUG)]
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Neural networks as PDE solvers:

Physics-informed neural networks

e BC/IC values treated as conventional observations

e Residual of strong-form PDE at collocation points added to loss function
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[Haghighat et al (2020), arXiv:2003.02751v2]
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... Physics-informed neural networks

Neural networks as PDE solvers:
e BC/IC values treated as conventional observations

e Residual of strong-form PDE at collocation points added to loss function
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(o)

Learning functional operators from data:

Operator Networks

e Beneficial bias through architecture split = better generalization

Deep Operator Network (DeepONet)
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Operator Networks

Learning functional operators from data:
e Beneficial bias through architecture split = better generalization
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[Michael Abdelmalik’s group (TU/e]]
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(offne)
Hybrid models

Physical bias through constitutive assumptions:

e Machine learning for individual model components

e Embedding complete physical models in ML framework

level set isocontour prediction
—— yield surface prediction / ¢~(0)

[Vlassis and Sun (2021), CMAME 377:113695]
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(offne)
Hybrid models

Physical bias through constitutive assumptions:
e Machine learning for individual model components

e Embedding complete physical models in ML framework
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(offine) .
Computer vision

Extracting knowledge from images in creative ways:

e Augmenting microscopy experiments

[} Reduced-order mode| se|ec’rion

Input image

Segmentation and detection Super-resolution microscopy
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" [Adapted from: Von Chamier et al (2021), Nature Comm 12:2276]
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[Adapted from: Alzubaidi et al (2022), Rock Mech Rock Eng 55 3719-3734]
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(offine) .
Computer vision

Extracting knowledge from images in creative ways:
e Augmenting microscopy experiments

e Reduced-order model selection

Load class #1 Load class #2 Load class #3 Load class #4
2D digital image of part Simulation data
in the experimental on geometries (Gj),_ lM
setup: I+

Cluster S—

[N'Guyen et al (2018), Complexity 2018:10]
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(oo Deep learning on graphs

Inductive bias coming from geometry:

e Sparse network connectivity following a priori geometric assumptions

e Information spreads throughout the domain through message passing
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[Vlassis and Sun (2022), arXiv:2208.00246v1]
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@ :
(oo Deep learning on graphs

Inductive bias coming from geometry:
e Sparse network connectivity following a priori geometric assumptions

e Information spreads throughout the domain through message passing

TARGET NODE

@® - AGGREGATE

INPUT GRAPH

[Hamilton (2020), Graph Representation Learning, Lecture notes]
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Optimization

Design [ g Manufacturing
nd bk Aud
[ [ ——
FDM

Shape+

metamaterial ?

FEM+ML

[Zhilycev et al (2022), Materials and Design 218:110709]

[Anastasiia Krushynska’s group (RUG)] 18/20



(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 1, £ = 50.0 max: 24.86
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[J Storm (2021), MSc Thesis]
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(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 6, £ = 0.001 max: 27.597
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[J Storm (2021), MSc Thesis]
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(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 11, { = 10.0 max: 27.597
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 16, £ = 50.0 max: 27.597
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[J Storm (2021), MSc Thesis]
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 24, £ = 10.0 max: 28.157
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[J Storm (2021), MSc Thesis]
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:

e Design exploration, Bayesian optimization

e Generative machine learning

Iteration: 24, £ = 10.0 max: 28.157
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning

Bayesian optimization for polydispersity in branched polymers
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[Andrea Giuntoli’s group (RUG)]
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(offne)
(o) Optimization and discovery with ML

Learning architectures for material design:
e Design exploration, Bayesian optimization

e Generative machine learning
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Latent Space

€

Conceptual
Space

K-

. T Distance Metric 1 Diverse Candidates Aperiodic Design
e e - .t
(g Foryol @ ol c>ﬁ<<,=>:.;c>'

[Schumann and Aragén (2022), arXiv:2110.14985v1] i 3 ‘S’ ~OEEE

Metamaterial Family Functionally Graded Design

[Alejandro Aragén’s group (TUD)]
[Wang et al (2020), CMAME 372:113377]
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Introducing our workshop speakers

TU Eindhoven: Bas Kessels
e ML-based parameter updating in nonlinear dynamics

Twente University: Retief Lubbe

e Bayesian inference of granular mesostructures

University of Groningen: Lei Zhang

e Active learning for atomistic models

TU Delft: Prakash Thakolkaran

e Learning hyperelasticity without stress data
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We hope to see you at the workshop!

A nervous young researcher about to present their work, by Frans Hals
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